Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 129 results
1.

Engineering Green-light-responsive Heterologous Gene Expression in Pseudomonas.

green CcaS/CcaR P. putida
Methods Mol Biol, 2024 DOI: 10.1007/978-1-0716-3473-8_3 Link to full text
Abstract: Engineering bacterial properties requires precision and fine-tuning for optimal control of the desired application. In consequence, it is essential to accurately turn the function of interest from OFF to ON state and vice versa, avoiding any type of residual activation. For this type of purpose, light switches have revealed a clean and powerful tool in which control does not depend on the addition of chemical compounds that may remain in the media. To reach this degree of directed regulation through light, the switch based on the cyanobacterial two-component system CcaSR system was previously adapted to manipulate Pseudomonas putida for transcription of a gene of interest. In this chapter, we describe how to induce biofilm formation by placing the expression of the c-di-GMP-producing diguanylate cyclase PleD from Caulobacter sp. under the control of the CcaSR system. The regulation through optogenetics accomplished with this protocol promotes higher exploitation of biofilm beneficial features in a cheaper and cleaner way compared to chemical induction.
2.

Multicolor optogenetics for regulating flux ratio of three glycolytic pathways using EL222 and CcaSR in Escherichia coli.

blue green CcaS/CcaR EL222 E. coli Transgene expression Multichromatic
Biotechnol Bioeng, 20 Dec 2023 DOI: 10.1002/bit.28628 Link to full text
Abstract: Optogenetics is an attractive synthetic biology tool for controlling the metabolic flux distribution. Here, we demonstrated optogenetic flux ratio control of glycolytic pathways consisting of the Embden-Meyerhof-Parnas (EMP), pentose phosphate (PP), and Entner-Doudoroff (ED) pathways by illuminating multicolor lights using blue light-responsive EL222 and green/red light-responsive CcaSR in Escherichia coli. EL222 forms a dimer and binds to a particular DNA sequence under blue light; therefore, target gene expression can be reduced or induced by inserting a recognition sequence into its promoter regions. First, a flux ratio between the PP and ED pathways was controlled by blue light using EL222. After blocking the EMP pathway, the EL222-recognition sequence was inserted between the -35 and -10 regions of gnd to repress the PP flux and was also inserted upstream of the -35 region of edd to induce ED flux. After adjusting light intensity, the PP:ED flux ratios were 60:39% and 29:70% under dark and blue light conditions, respectively. Finally, a CcaSR-based pgi expression system was implemented to control the flux ratio between the EMP and PP + ED pathways by illuminating green/red light. The EMP:PP:ED flux ratios were 80:9:11%, 14:35:51%, and 33:5:62% under green, red, and red and blue light, respectively.
3.

Unlocking the potential of optogenetics in microbial applications.

blue green red Cryptochromes Cyanobacteriochromes LOV domains Phytochromes Review
Curr Opin Microbiol, 30 Nov 2023 DOI: 10.1016/j.mib.2023.102404 Link to full text
Abstract: Optogenetics is a powerful approach that enables researchers to use light to dynamically manipulate cellular behavior. Since the first published use of optogenetics in synthetic biology, the field has expanded rapidly, yielding a vast array of tools and applications. Despite its immense potential for achieving high spatiotemporal precision, optogenetics has predominantly been employed as a substitute for conventional chemical inducers. In this short review, we discuss key features of microbial optogenetics and highlight applications for understanding biology, cocultures, bioproduction, biomaterials, and therapeutics, in which optogenetics is more fully utilized to realize goals not previously possible by other methods.
4.

Toward a modeling, optimization, and predictive control framework for fed-batch metabolic cybergenetics.

green CcaS/CcaR E. coli Transgene expression
Biotechnol Bioeng, 9 Nov 2023 DOI: 10.1002/bit.28575 Link to full text
Abstract: Biotechnology offers many opportunities for the sustainable manufacturing of valuable products. The toolbox to optimize bioprocesses includes extracellular process elements such as the bioreactor design and mode of operation, medium formulation, culture conditions, feeding rates, and so on. However, these elements are frequently insufficient for achieving optimal process performance or precise product composition. One can use metabolic and genetic engineering methods for optimization at the intracellular level. Nevertheless, those are often of static nature, failing when applied to dynamic processes or if disturbances occur. Furthermore, many bioprocesses are optimized empirically and implemented with little-to-no feedback control to counteract disturbances. The concept of cybergenetics has opened new possibilities to optimize bioprocesses by enabling online modulation of the gene expression of metabolism-relevant proteins via external inputs (e.g., light intensity in optogenetics). Here, we fuse cybergenetics with model-based optimization and predictive control for optimizing dynamic bioprocesses. To do so, we propose to use dynamic constraint-based models that integrate the dynamics of metabolic reactions, resource allocation, and inducible gene expression. We formulate a model-based optimal control problem to find the optimal process inputs. Furthermore, we propose using model predictive control to address uncertainties via online feedback. We focus on fed-batch processes, where the substrate feeding rate is an additional optimization variable. As a simulation example, we show the optogenetic control of the ATPase enzyme complex for dynamic modulation of enforced ATP wasting to adjust product yield and productivity.
5.

Emerging optogenetics technologies in biomedical applications.

blue green near-infrared red UV violet Cryptochromes Cyanobacteriochromes LOV domains Phytochromes UV receptors Review
Smart Med, 1 Nov 2023 DOI: 10.1002/smmd.20230026 Link to full text
Abstract: Optogenetics is a cutting-edge technology that merges light control and genetics to achieve targeted control of tissue cells. Compared to traditional methods, optogenetics offers several advantages in terms of time and space precision, accuracy, and reduced damage to the research object. Currently, optogenetics is primarily used in pathway research, drug screening, gene expression regulation, and the stimulation of molecule release to treat various diseases. The selection of light-sensitive proteins is the most crucial aspect of optogenetic technology; structural changes occur or downstream channels are activated to achieve signal transmission or factor release, allowing efficient and controllable disease treatment. In this review, we examine the extensive research conducted in the field of biomedicine concerning optogenetics, including the selection of light-sensitive proteins, the study of carriers and delivery devices, and the application of disease treatment. Additionally, we offer critical insights and future implications of optogenetics in the realm of clinical medicine.
6.

Light-driven synchronization of optogenetic clocks.

green CcaS/CcaR E. coli Cell cycle control Transgene expression
bioRxiv, 24 Oct 2023 DOI: 10.1101/2023.10.24.563722 Link to full text
Abstract: Synthetic genetic oscillators can serve as internal clocks within engineered cells to program periodic expression. However, cell-to-cell variability introduces a dispersion in the characteristics of these clocks that drives the population to complete desynchronization. Here we introduce the optorepressilator, an optically controllable genetic clock that combines the repressilator, a three-node synthetic network in E. coli, with an optogenetic module enabling to reset, delay, or advance its phase using optical inputs. We demonstrate that a population of optorepressilators can be synchronized by transient green light exposure or entrained to oscillate indefinitely by a train of short pulses, through a mechanism reminiscent of natural circadian clocks. Furthermore, we investigate the system’s response to detuned external stimuli observing multiple regimes of global synchronization. Integrating experiments and mathematical modeling, we show that the entrainment mechanism is robust and can be understood quantitatively from single cell to population level.
7.

Highlighter: An optogenetic system for high-resolution gene expression control in plants.

green CcaS/CcaR E. coli Transgene expression
PLoS Biol, 21 Sep 2023 DOI: 10.1371/journal.pbio.3002303 Link to full text
Abstract: Optogenetic actuators have revolutionized the resolution at which biological processes can be controlled. In plants, deployment of optogenetics is challenging due to the need for these light-responsive systems to function in the context of horticultural light environments. Furthermore, many available optogenetic actuators are based on plant photoreceptors that might crosstalk with endogenous signaling processes, while others depend on exogenously supplied cofactors. To overcome such challenges, we have developed Highlighter, a synthetic, light-gated gene expression system tailored for in planta function. Highlighter is based on the photoswitchable CcaS-CcaR system from cyanobacteria and is repurposed for plants as a fully genetically encoded system. Analysis of a re-engineered CcaS in Escherichia coli demonstrated green/red photoswitching with phytochromobilin, a chromophore endogenous to plants, but also revealed a blue light response likely derived from a flavin-binding LOV-like domain. We deployed Highlighter in transiently transformed Nicotiana benthamiana for optogenetic control of fluorescent protein expression. Using light to guide differential fluorescent protein expression in nuclei of neighboring cells, we demonstrate unprecedented spatiotemporal control of target gene expression. We implemented the system to demonstrate optogenetic control over plant immunity and pigment production through modulation of the spectral composition of broadband visible (white) light. Highlighter is a step forward for optogenetics in plants and a technology for high-resolution gene induction that will advance fundamental plant biology and provide new opportunities for crop improvement.
8.

Tuning of B12 photochemistry in the CarH photoreceptor to avoid radical photoproduct

green Cobalamin-binding domains Background
bioRxiv, 21 Sep 2023 DOI: 10.1101/2023.08.11.552799 Link to full text
Abstract: Time-resolved infrared spectroscopy reveals the flow of electron density through coenzyme B12 in the lightactivated, bacterial transcriptional regulator, CarH. The protein stabilises a series of charge transfer states that result in a photoresponse that avoids reactive, and potentially damaging, radical photoproducts.
9.

Diya – a universal light illumination platform for multiwell plate cultures.

blue green CcaS/CcaR CRY2/CIB1 EL222 Magnets VVD E. coli HEK293T HeLa S. cerevisiae Transgene expression
iScience, 9 Sep 2023 DOI: 10.1016/j.isci.2023.107862 Link to full text
Abstract: Recent progress in protein engineering has established optogenetics as one of the leading external non-invasive stimulation strategies, with many optogenetic tools being designed for in vivo operation. Characterization and optimization of these tools require a high-throughput and versatile light delivery system targeting micro-titer culture volumes. Here, we present a universal light illumination platform – Diya, compatible with a wide range of cell culture plates and dishes. Diya hosts specially-designed features ensuring active thermal management, homogeneous illumination, and minimal light bleedthrough. It offers light induction programming via a user-friendly custom-designed GUI. Through extensive characterization experiments with multiple optogenetic tools in diverse model organisms (bacteria, yeast and human cell lines), we show that Diya maintains viable conditions for cell cultures undergoing light induction. Finally, we demonstrate an optogenetic strategy for in vivo biomolecular controller operation. With a custom-designed antithetic integral feedback circuit, we exhibit robust perfect adaptation and light-controlled set-point variation using Diya.
10.

Selective induction of programmed cell death using synthetic biology tools.

blue green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Cyanobacteriochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Semin Cell Dev Biol, 17 Aug 2023 DOI: 10.1016/j.semcdb.2023.07.012 Link to full text
Abstract: Regulated cell death (RCD) controls the removal of dispensable, infected or malignant cells, and is thus essential for development, homeostasis and immunity of multicellular organisms. Over the last years different forms of RCD have been described (among them apoptosis, necroptosis, pyroptosis and ferroptosis), and the cellular signaling pathways that control their induction and execution have been characterized at the molecular level. It has also become apparent that different forms of RCD differ in their capacity to elicit inflammation or an immune response, and that RCD pathways show a remarkable plasticity. Biochemical and genetic studies revealed that inhibition of a given pathway often results in the activation of back-up cell death mechanisms, highlighting close interconnectivity based on shared signaling components and the assembly of multivalent signaling platforms that can initiate different forms of RCD. Due to this interconnectivity and the pleiotropic effects of 'classical' cell death inducers, it is challenging to study RCD pathways in isolation. This has led to the development of tools based on synthetic biology that allow the targeted induction of RCD using chemogenetic or optogenetic methods. Here we discuss recent advances in the development of such toolset, highlighting their advantages and limitations, and their application for the study of RCD in cells and animals.
11.

OptoCRISPRi-HD: Engineering a Bacterial Green-Light-Activated CRISPRi System with a High Dynamic Range.

green CcaS/CcaR E. coli Control of cytoskeleton / cell motility / cell shape Transgene expression
ACS Synth Biol, 22 May 2023 DOI: 10.1021/acssynbio.3c00035 Link to full text
Abstract: The ability to modulate gene expression is crucial for studying gene function and programming cell behaviors. Combining the reliability of CRISPRi and the precision of optogenetics, the optoCRISPRi technique is emerging as an advanced tool for live-cell gene regulation. Since previous versions of optoCRISPRi often exhibit no more than a 10-fold dynamic range due to the leakage activity, they are not suitable for targets that are sensitive to such leakage or critical for cell growth. Here, we describe a green-light-activated CRISPRi system with a high dynamic range (40 fold) and the flexibility of changing targets in Escherichia coli. Our optoCRISPRi-HD system can efficiently repress essential genes, nonessential genes, or inhibit the initiation of DNA replication. Providing a regulative system with high resolution over space-time and extensive targets, our study would facilitate further research involving complex gene networks, metabolic flux redirection, or bioprinting.
12.

The clinical potential of optogenetic interrogation of pathogenesis.

blue cyan green red UV Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Clin Transl Med, May 2023 DOI: 10.1002/ctm2.1243 Link to full text
Abstract: Opsin-based optogenetics has emerged as a powerful biomedical tool using light to control protein conformation. Such capacity has been initially demonstrated to control ion flow across the cell membrane, enabling precise control of action potential in excitable cells such as neurons or muscle cells. Further advancement in optogenetics incorporates a greater variety of photoactivatable proteins and results in flexible control of biological processes, such as gene expression and signal transduction, with commonly employed light sources such as LEDs or lasers in optical microscopy. Blessed by the precise genetic targeting specificity and superior spatiotemporal resolution, optogenetics offers new biological insights into physiological and pathological mechanisms underlying health and diseases. Recently, its clinical potential has started to be capitalized, particularly for blindness treatment, due to the convenient light delivery into the eye.
13.

Engineering of bidirectional, cyanobacteriochrome-based light-inducible dimers (BICYCL)s.

blue green red Am1 c0023g2/BAm green Am1 c0023g2/BAm red AsLOV2 TULIP CHO-K1 HEK293T in vitro S. cerevisiae Transgene expression Multichromatic
Nat Methods, 23 Feb 2023 DOI: 10.1038/s41592-023-01764-8 Link to full text
Abstract: Optogenetic tools for controlling protein-protein interactions (PPIs) have been developed from a small number of photosensory modules that respond to a limited selection of wavelengths. Cyanobacteriochrome (CBCR) GAF domain variants respond to an unmatched array of colors; however, their natural molecular mechanisms of action cannot easily be exploited for optogenetic control of PPIs. Here we developed bidirectional, cyanobacteriochrome-based light-inducible dimers (BICYCL)s by engineering synthetic light-dependent interactors for a red/green GAF domain. The systematic approach enables the future engineering of the broad chromatic palette of CBCRs for optogenetics use. BICYCLs are among the smallest optogenetic tools for controlling PPIs and enable either green-ON/red-OFF (BICYCL-Red) or red-ON/green-OFF (BICYCL-Green) control with up to 800-fold state selectivity. The access to green wavelengths creates new opportunities for multiplexing with existing tools. We demonstrate the utility of BICYCLs for controlling protein subcellular localization and transcriptional processes in mammalian cells and for multiplexing with existing blue-light tools.
14.

Retraction.

blue green red CcaS/CcaR Cph1 YtvA E. coli Multichromatic
J Cell Biochem, Nov 2022 DOI: doi.org/10.1002/adfm.201901788 Link to full text
Abstract: Retraction: "Long noncoding RNA ZFPM2-AS1 is involved in lung adenocarcinoma via miR-511-3p/AFF4 pathway," by Juan Li, Jun Ge, Ye Yang, Bin Liu, Min Zheng, and Rui Shi, J Cell Biochem. 2020; 2534-2542: The above article, published online on November 6, 2019, in Wiley Online Library (https://doi.org/10.1002/jcb.29476) has been retracted by agreement between the journal's Editor in Chief, Prof. Dr. Christian Behl, and Wiley Periodicals LLC. The retraction has been agreed after the authors stated that unintentional errors occurred during the research process, and the experimental results cannot be verified. Thus, the conclusions are considered to be invalid. The authors were not available for a final confirmation of the retraction.
15.

Deep model predictive control of gene expression in thousands of single cells.

green CcaS/CcaR E. coli Transgene expression
bioRxiv, 31 Oct 2022 DOI: 10.1101/2022.10.28.514305 Link to full text
Abstract: Gene expression is inherently dynamic, due to complex regulation and stochastic biochemical events. However, the effects of these dynamics on cell phenotypes can be difficult to determine. Researchers have historically been limited to passive observations of natural dynamics, which can preclude studies of elusive and noisy cellular events where large amounts of data are required to reveal statistically significant effects. Here, using recent advances in the fields of machine learning and control theory, we train a deep neural network to accurately predict the response of an optogenetic system in Escherichia coli cells. We then use the network in a deep model predictive control framework to impose arbitrary and cell-specific gene expression dynamics on thousands of single cells in real time, applying the framework to generate complex time-varying patterns. We also showcase the framework’s ability to link expression patterns to dynamic functional outcomes by controlling expression of the tetA antibiotic resistance gene. This study highlights how deep learning-enabled feedback control can be used to tailor distributions of gene expression dynamics with high accuracy and throughput.
16.

Light-regulated gene expression in Bacteria: Fundamentals, advances, and perspectives.

blue green near-infrared red violet BLUF domains Cobalamin-binding domains Cryptochromes Cyanobacteriochromes LOV domains Phytochromes Review
Front Bioeng Biotechnol, 14 Oct 2022 DOI: 10.3389/fbioe.2022.1029403 Link to full text
Abstract: Numerous photoreceptors and genetic circuits emerged over the past two decades and now enable the light-dependent i.e., optogenetic, regulation of gene expression in bacteria. Prompted by light cues in the near-ultraviolet to near-infrared region of the electromagnetic spectrum, gene expression can be up- or downregulated stringently, reversibly, non-invasively, and with precision in space and time. Here, we survey the underlying principles, available options, and prominent examples of optogenetically regulated gene expression in bacteria. While transcription initiation and elongation remain most important for optogenetic intervention, other processes e.g., translation and downstream events, were also rendered light-dependent. The optogenetic control of bacterial expression predominantly employs but three fundamental strategies: light-sensitive two-component systems, oligomerization reactions, and second-messenger signaling. Certain optogenetic circuits moved beyond the proof-of-principle and stood the test of practice. They enable unprecedented applications in three major areas. First, light-dependent expression underpins novel concepts and strategies for enhanced yields in microbial production processes. Second, light-responsive bacteria can be optogenetically stimulated while residing within the bodies of animals, thus prompting the secretion of compounds that grant health benefits to the animal host. Third, optogenetics allows the generation of precisely structured, novel biomaterials. These applications jointly testify to the maturity of the optogenetic approach and serve as blueprints bound to inspire and template innovative use cases of light-regulated gene expression in bacteria. Researchers pursuing these lines can choose from an ever-growing, versatile, and efficient toolkit of optogenetic circuits.
17.

The bright frontiers of microbial metabolic optogenetics.

blue green red Cryptochromes Cyanobacteriochromes LOV domains Phytochromes Review
Curr Opin Chem Biol, 11 Sep 2022 DOI: 10.1016/j.cbpa.2022.102207 Link to full text
Abstract: In recent years, light-responsive systems from the field of optogenetics have been applied to several areas of metabolic engineering with remarkable success. By taking advantage of light's high tunability, reversibility, and orthogonality to host endogenous processes, optogenetic systems have enabled unprecedented dynamical controls of microbial fermentations for chemical production, metabolic flux analysis, and population compositions in co-cultures. In this article, we share our opinions on the current state of this new field of metabolic optogenetics.We make the case that it will continue to impact metabolic engineering in increasingly new directions, with the potential to challenge existing paradigms for metabolic pathway and strain optimization as well as bioreactor operation.
18.

Shedding light on current trends in molecular optogenetics.

blue green red violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Curr Opin Chem Biol, 18 Aug 2022 DOI: 10.1016/j.cbpa.2022.102196 Link to full text
Abstract: Molecular optogenetics is a highly dynamic research field. In the past two years, the field was characterized by the development of new allosteric switches as well as the forward integration of optogenetics research towards application. Further, two areas of research have significantly gathered momentum, the use of optogenetics to control liquid-liquid phase separation as well as the application of optogenetic tools in the extracellular space. Here, we review these areas and discuss future directions.
19.

Illuminating bacterial behaviors with optogenetics.

blue green red violet BLUF domains Cryptochromes Cyanobacteriochromes LOV domains Phytochromes Review
Curr Opin Solid State Mater Sci, 9 Aug 2022 DOI: 10.1016/j.cossms.2022.101023 Link to full text
Abstract: Optogenetic approaches enable light-mediated control of cellular activities using genetically encoded photoreceptors. While optogenetic technology is already well established in neuroscience and fundamental research, the implementation of optogenetic tools in bacteriology is still emerging. Engineered bacteria with the specific optogenetic system that function at the transcriptional or post-translational level can sense and respond to light, allowing optogenetic control of bacterial behaviors. In this review, we give a brief overview of available optogenetic systems, including their mode of action, classification, and engineering strategies, and focus on optogenetic control of bacterial behaviors with the highlight of strategies for use of optogenetic systems.
20.

Recent advances in cellular optogenetics for photomedicine.

blue cyan green near-infrared red UV violet PhyB/PIF6 BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Adv Drug Deliv Rev, 16 Jul 2022 DOI: 10.1016/j.addr.2022.114457 Link to full text
Abstract: Since the successful introduction of exogenous photosensitive proteins, channelrhodopsin, to neurons, optogenetics has enabled substantial understanding of profound brain function by selectively manipulating neural circuits. In an optogenetic system, optical stimulation can be precisely delivered to brain tissue to achieve regulation of cellular electrical activity with unprecedented spatio-temporal resolution in living organisms. In recent years, the development of various optical actuators and novel light-delivery techniques has greatly expanded the scope of optogenetics, enabling the control of other signal pathways in non-neuronal cells for different biomedical applications, such as phototherapy and immunotherapy. This review focuses on the recent advances in optogenetic regulation of cellular activities for photomedicine. We discuss emerging optogenetic tools and light-delivery platforms, along with a survey of optogenetic execution in mammalian and microbial cells.
21.

Plant optogenetics: Applications and perspectives.

blue cyan green near-infrared red UV Cobalamin-binding domains Cryptochromes Cyanobacteriochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Curr Opin Plant Biol, 30 Jun 2022 DOI: 10.1016/j.pbi.2022.102256 Link to full text
Abstract: To understand cell biological processes, like signalling pathways, protein movements, or metabolic processes, precise tools for manipulation are desired. Optogenetics allows to control cellular processes by light and can be applied at a high temporal and spatial resolution. In the last three decades, various optogenetic applications have been developed for animal, fungal, and prokaryotic cells. However, using optogenetics in plants has been difficult due to biological and technical issues, like missing cofactors, the presence of endogenous photoreceptors, or the necessity of light for photosynthesis, which potentially activates optogenetic tools constitutively. Recently developed tools overcome these limitations, making the application of optogenetics feasible also in plants. Here, we highlight the most useful recent applications in plants and give a perspective for future optogenetic approaches in plants science.
22.

Extracellular Optogenetics at the Interface of Synthetic Biology and Materials Science.

blue cyan green red UV violet Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Front Bioeng Biotechnol, 14 Jun 2022 DOI: 10.3389/fbioe.2022.903982 Link to full text
Abstract: We review fundamental mechanisms and applications of OptoGels: hydrogels with light-programmable properties endowed by photoswitchable proteins ("optoproteins") found in nature. Light, as the primary source of energy on earth, has driven evolution to develop highly-tuned functionalities, such as phototropism and circadian entrainment. These functions are mediated through a growing family of optoproteins that respond to the entire visible spectrum ranging from ultraviolet to infrared by changing their structure to transmit signals inside of cells. In a recent series of articles, engineers and biochemists have incorporated optoproteins into a variety of extracellular systems, endowing them with photocontrollability. While other routes exist for dynamically controlling material properties, light-sensitive proteins have several distinct advantages, including precise spatiotemporal control, reversibility, substrate selectivity, as well as biodegradability and biocompatibility. Available conjugation chemistries endow OptoGels with a combinatorially large design space determined by the set of optoproteins and polymer networks. These combinations result in a variety of tunable material properties. Despite their potential, relatively little of the OptoGel design space has been explored. Here, we aim to summarize innovations in this emerging field and highlight potential future applications of these next generation materials. OptoGels show great promise in applications ranging from mechanobiology, to 3D cell and organoid engineering, and programmable cell eluting materials.
23.

Optogenetic technologies in translational cancer research.

blue cyan green near-infrared red Cryptochromes Cyanobacteriochromes Fluorescent proteins LOV domains Phytochromes Review
Biotechnol Adv, 9 Jun 2022 DOI: 10.1016/j.biotechadv.2022.108005 Link to full text
Abstract: Gene and cell therapies are widely recognized as future cancer therapeutics but poor controllability limits their clinical applications. Optogenetics, the use of light-controlled proteins to precisely spatiotemporally regulate the activity of genes and cells, opens up new possibilities for cancer treatment. Light of specific wavelength can activate the immune response, oncolytic activity and modulate cell signaling in tumor cells non-invasively, in dosed manner, with tissue confined action and without side effects of conventional therapies. Here, we review optogenetic approaches in cancer research, their clinical potential and challenges of incorporating optogenetics in cancer therapy. We critically discuss beneficial combinations of optogenetic technologies with therapeutic nanobodies, T-cell activation and CAR-T cell approaches, genome editors and oncolytic viruses. We consider viral vectors and nanoparticles for delivering optogenetic payloads and activating light to tumors. Finally, we highlight herein the prospects for integrating optogenetics into immunotherapy as a novel, fast, reversible and safe approach to cancer treatment.
24.

Platforms for Optogenetic Stimulation and Feedback Control.

blue green red Cryptochromes Cyanobacteriochromes Phytochromes Review
Front Bioeng Biotechnol, 8 Jun 2022 DOI: 10.3389/fbioe.2022.918917 Link to full text
Abstract: Harnessing the potential of optogenetics in biology requires methodologies from different disciplines ranging from biology, to mechatronics engineering, to control engineering. Light stimulation of a synthetic optogenetic construct in a given biological species can only be achieved via a suitable light stimulation platform. Emerging optogenetic applications entail a consistent, reproducible, and regulated delivery of light adapted to the application requirement. In this review, we explore the evolution of light-induction hardware-software platforms from simple illumination set-ups to sophisticated microscopy, microtiter plate and bioreactor designs, and discuss their respective advantages and disadvantages. Here, we examine design approaches followed in performing optogenetic experiments spanning different cell types and culture volumes, with induction capabilities ranging from single cell stimulation to entire cell culture illumination. The development of automated measurement and stimulation schemes on these platforms has enabled researchers to implement various in silico feedback control strategies to achieve computer-controlled living systems-a theme we briefly discuss in the last part of this review.
25.

Synthetic microbiology applications powered by light.

blue green red BLUF domains Cyanobacteriochromes LOV domains Phytochromes Review
Curr Opin Microbiol, 31 May 2022 DOI: 10.1016/j.mib.2022.102158 Link to full text
Abstract: Synthetic biology is a field of research in which molecular parts (mostly nucleic acids and proteins) are de novo created or modified and then used either alone or in combination to achieve new functions that can help solve the problems of our modern society. In synthetic microbiology, microbes are employed rather than other organisms or cell-free systems. Optogenetics, a relatively recently established technology that relies on the use of genetically encoded photosensitive proteins to control biological processes with high spatiotemporal precision, offers the possibility to empower synthetic (micro)biology applications due to the many positive features that light has as an external trigger. In this review, we describe recent synthetic microbiology applications that made use of optogenetics after briefly introducing the molecular mechanism behind some of the most employed optogenetic tools. We highlight the power and versatility of this technique, which opens up new horizons for both research and industry.
Submit a new publication to our database